Part Number Hot Search : 
10200 PQ108A1 2SK2847 C2R01T 0EVKI 10200 PT2380 AN921
Product Description
Full Text Search
 

To Download HYI18TC256160AF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 November 2007
www..com
HYB18T C25680 0 AF HYB18T C25616 0 AF HYI18TC256800AF HYI18TC256160AF
256-Mbit Double-Data-Rate-Two SDRAM DDR2 SDRAM RoHS Compliant Products
Internet Data Sheet
Rev. 1.3
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Revision History: Rev. 1.3, 2007-11 All All 98
www..com
Adapted internet edition Added more products Corrected tRP in tables in chapter 7.2
Previous Revision: Rev. 1.2, 2007-04
We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: techdoc@qimonda.com
qag_techdoc_rev411 / 3.31 QAG / 2007-01-22 03062006-H3V1-XJT4
2
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
1
www..com
Overview
This chapter gives an overview of the 256-Mbit Double-Data-Rate-Two SDRAM product family and describes its main characteristics.
1.1
Features
The 256-Mbit Double-Data-Rate-Two SDRAM offers the following key features: * Off-Chip-Driver impedance adjustment (OCD) and * 1.8 V 0.1 V Power Supply 1.8 V 0.1 V (SSTL_18) compatible I/O On-Die-Termination (ODT) for better signal quality * DRAM organizations with 8,16 data in/outputs * Auto-Precharge operation for read and write bursts * Double Data Rate architecture: two data transfers per * Auto-Refresh, Self-Refresh and power saving Powerclock cycle four internal banks for concurrent operation Down modes * Programmable CAS Latency: 3, 4, 5 and 6 * Average Refresh Period 7.8 s at a TCASE lower * Programmable Burst Length: 4 and 8 than 85 C, 3.9 s between 85 C and 95 C * Differential clock inputs (CK and CK) * Programmable self refresh rate via EMRS2 setting * Programmable partial array refresh via EMRS2 settings * Bi-directional, differential data strobes (DQS and DQS) are transmitted / received with data. Edge aligned with read * DCC enabling via EMRS2 setting * Full and reduced Strength Data-Output Drivers data and center-aligned with write data. * 1KB page size * DLL aligns DQ and DQS transitions with clock * Packages: PG-TFBGA-84, PG-TFBGA-60 * DQS can be disabled for single-ended data strobe operation * RoHS Compliant Products1) * Commands entered on each positive clock edge, data and * All Speed grades faster than DDR2-400 comply with data mask are referenced to both edges of DQS DDR2-400 timing specifications when run at a clock rate * Data masks (DM) for write data of 200 MHz. * Posted CAS by programmable additive latency for better command and data bus efficiency
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
3
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 1
Performance Table
QAG Speed Code DRAM Speed Grade CAS-RCD-RP latencies www..com Max. Clock Frequency CL3 CL4 CL5 CL6 Min. RAS-CAS-Delay Min. Row Precharge Time Min. Row Active Time Min. Row Cycle Time DDR2 -25F -800D 5-5-5 -2.5 -800E 6-6-6 200 266 333 400 15 15 45 60 -3S -667D 5-5-5 200 266 333 - 15 15 45 60 -3.7 -533C 4-4-4 200 266 266 - 15 15 45 60 -5 -400B 3-3-3 200 200 - - 15 15 40 55 Unit
tCK
MHz MHz MHz MHz ns ns ns ns
fCK3 fCK4 fCK5 fCK6 tRCD tRP tRAS tRC
200 266 400 - 12.5 12.5 45 57.5
1.2
Description
All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a single ended DQS or differential DQS-DQS pair in a source synchronous fashion. A 15 bit address bus is used to convey row, column and bank address information in a RAS-CAS multiplexing style. The DDR2 device operates with a 1.8 V 0.1 V power supply. An Auto-Refresh and Self-Refresh mode is provided along with various power-saving power-down modes. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. The DDR2 SDRAM is available in TFBGA package.
The 256-Mbit DDR2 DRAM is a high-speed Double-DataRate-Two CMOS Synchronous DRAM device containing 268,435,456 bits and internally configured as a quad-bank DRAM. The 256-Mbit device is organized as 8 Mbit x8 I/O x4 banks or 4 Mbit x16 I/O x4 banks chip. These synchronous devices achieve high speed transfer rates starting at 400 Mb/sec/pin for general applications. See Table 1 for performance figures. The device is designed to comply with all DDR2 DRAM key features: 1. Posted CAS with additive latency. 2. Write latency = read latency - 1. 3. Normal and weak strength data-output driver. 4. Off-Chip Driver (OCD) impedance adjustment. 5. On-Die Termination (ODT) function.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
4
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 2
Ordering Information for RoHS Compliant Products
www..com Type1) Product
Org. Speed
CAS-RCD-RP Latencies2)3)4)
Clock (MHz) Package
Note5)
Standard Temperature Range (0 C - +85 C) DDR2-800E( 6-6-6) HYB18TC256800AF-2.5 HYB18TC256160AF-2.5 DDR2-800D( 5-5-5) HYB18TC256160AF-25F DDR2-667D( 5-5-5) HYB18TC256800AF-3S HYB18TC256160AF-3S DDR2-533C( 4-4-4) HYB18TC256800AF-3.7 HYB18TC256160AF-3.7 DDR2-400B( 3-3-3) HYB18TC256800AF-5 HYB18TC256160AF-5 DDR2-800E( 6-6-6) HYI18TC256160AF-2.5 HYI18TC256800AF-2.5 DDR2-800D( 5-5-5) HYI18TC256160AF-25F DDR2-667D( 5-5-5) HYI18TC256800AF-3S HYI18TC256160AF-3S DDR2-533C( 4-4-4) HYI18TC256160AF-3.7 HYI18TC256800AF-3.7 DDR2-400B( 3-3-3) HYI18TC256800AF-5 HYI18TC256160AF-5
1) 2) 3) 4)
x8 x16 x16 x8 x16 x8 x16 x8 x16
DDR2-800E DDR2-800E DDR2-800D DDR2-667D DDR2-667D DDR2-533C DDR2-533C DDR2-400B DDR2-400B
6-6-6 6-6-6 5-5-5 5-5-5 5-5-5 4-4-4 4-4-4 3-3-3 3-3-3
400 400 400 333 333 266 266 200 200
PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-84
Industrial Temperature Range (-40 C - +85 C) x16 x8 x16 x8 x16 x16 x8 x8 x16 DDR2-800E DDR2-800E DDR2-800D DDR2-667D DDR2-667D DDR2-533C DDR2-533C DDR2-400B DDR2-400B 6-6-6 6-6-6 5-5-5 5-5-5 5-5-5 4-4-4 4-4-4 3-3-3 3-3-3 400 400 400 333 333 266 266 200 200 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-84 PG-TFBGA-84 PG-TFBGA-60 PG-TFBGA-60 PG-TFBGA-84
For detailed information regarding Product Type of Qimonda please see chapter "Product Nomenclature" of this datasheet. CAS: Column Address Strobe RCD: Row Column Delay RP: Row Precharge
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
5
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
5) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Note: Please check with your Qimonda representative that leadtime and availability of your preferred device type and version meet your project requirements.
www..com
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
6
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
2
www..com
Configuration
Configuration for TFBGA-60
This chapter contains the chip configuration.
2.1
The chip configuration of a DDR2 SDRAM is listed by function in Table 3. The abbreviations used in the Ball#/Buffer Type columns are explained in Table 4 and Table 5 respectively. The ball numbering for the FBGA package is depicted in figures.
TABLE 3
Configuration
Ball# Clock Signals E8 F8 F2 Control Signals F7 G7 F3 G8 G2 G3 H8 H3 H7 J2 J8 J3 J7 K2 K8 K3 H2 K7 L2 RAS CAS WE CS BA0 BA1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 AP A11 A12 I I I I I I I I I I I I I I I I I I I I SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL Address Signal 12:0, Address Signal 10/Autoprecharge Chip Select Bank Address Bus 1:0 Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) CK CK CKE I I I SSTL SSTL SSTL Clock Enable Clock Signal CK, CK Name Ball Type Buffer Type Function
Address Signals
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
7
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
Ball Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O O O I PWR PWR PWR PWR AI PWR PWR NC I
Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL - - - - - - - - SSTL
Function
Data Signals x8 Organization C8 C2
www..com
DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQS DQS RDQS RDQS DM
Data Signal 7:0
D7 D3 D1 D9 B1 B9
Data Strobe x8 Organisation B7 A8 B3 A2 B3 Power Supplies A9, C1, C3, C7, VDDQ C9 I/O Driver Power Supply Power Supply I/O Driver Power Supply Power Supply I/O Reference Voltage Power Supply Power Supply Not Connected On-Die Termination Control Data Strobe Read Data Strobe
Data Mask x8 Organization Data Mask
VDD A7, B2, B8, D2, VSSQ
A1, L1, E9, H9 D8 E2 E1 E7 G1, L3, L7, L8 F9 A3, E3, J1, K9
VSS VREF VDDL VSSDL
NC ODT
Not Connected x8 Organization Other Balls x8 Organization
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
8
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 4
Abbreviations for Ball Type
Abbreviation I O
www..com
Description Standard input-only ball. Digital levels. Output. Digital levels. I/O is a bidirectional input/output signal. Input. Analog levels. Power Ground Not Connected
I/O AI
PWR GND NC
TABLE 5
Abbreviations for Buffer Type
Abbreviation SSTL LV-CMOS CMOS OD Description Serial Stub Terminated Logic (SSTL_18) Low Voltage CMOS CMOS Levels Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
9
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Chip Configuration for x8 components, TFBGA-60 (top view)
FIGURE 1
www..com
Notes 1. 2. 3. 4. RDQS / RDQS are enabled by EMRS(1) command. If RDQS / RDQS is enabled, the DM function is disabled When enabled, RDQS & RDQS are used as strobe signals during reads. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device. 5. Ball position L8 is Not Connected on 256-Mbit.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
10
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
2.2
Configuration for TFBGA-84
The chip configuration of a DDR2 SDRAM is listed by function in Table 6. The abbreviations used in the Ball#/Buffer Type columns are explained in Table 7 and Table 8 respectively.
TABLE 6
www..com
Configuration
Name Ball Type I I I I I I I I I I I I I I I I I I I I I I I Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL Address Signal 12:0, Address Signal 10/Autoprecharge Chip Select Bank Address Bus 1:0 Clock Enable Row Address Strobe (RAS), Column Address Strobe (CAS), Write Enable (WE) Function
Ball#
Clock Signals x16 Organization J8 K8 K2 K7 L7 K3 L8 L2 L3 M8 M3 M7 N2 N8 N3 N7 P2 P8 P3 M2 P7 R2 CK CK CKE RAS CAS WE CS BA0 BA1 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 AP A11 A12 Clock Signal CK, CK
Control Signals x16 Organization
Address Signals x16 Organization
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
11
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
Ball Type I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I I
Buffer Type SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL SSTL
Function
Data Signals x16 Organization G8 G2
www..com
DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 UDQS UDQS LDQS LDQS UDM LDM
Data Signal Lower Byte 7:0
H7 H3 H1 H9 F1 F9 C8 C2 D7 D3 D1 D9 B1 B9
Data Signal Upper Byte 15:8
Data Strobe x16 Organization B7 A8 F7 E8 B3 F3 Data Strobe Upper Byte Data Strobe Lower Byte
Data Mask x16 Organization Data Mask Upper Byte Data Mask Lower Byte Note: LDM is the input mask signal that controls the lower byte. I/O Reference Voltage I/O Driver Power Supply
Power Supplies x16 Organization J2
VREF
AI PWR
- -
A9, C1, C3, C7, VDDQ C9, E9, G1, G3, G7, G9 J1
VDDL
PWR PWR PWR
- - -
Power Supply Power Supply Power Supply
A1, E1, J9, M9, VDD R1 A7, B2, B8, D2, VSSQ D8, E7, F2, F8, H2, H8 J7
VSSDL
PWR PWR
- -
Power Supply Power Supply
A3, E3, J3, N1, VSS P9
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
12
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Ball#
Name
Ball Type NC
Buffer Type -
Function
Not Connected x16 Organization A2, E2, L1, R3, NC R7, R8
www..com
Not Connected
Other Balls x16 Organization K9 ODT I SSTL On-Die Termination Control
TABLE 7
Abbreviations for Ball Type
Abbreviation I O I/O AI PWR GND NC Description Standard input-only ball. Digital levels. Output. Digital levels. I/O is a bidirectional input/output signal. Input. Analog levels. Power Ground Not Connected
TABLE 8
Abbreviations for Buffer Type
Abbreviation SSTL LV-CMOS CMOS OD Description Serial Stub Terminated Logic (SSTL_18) Low Voltage CMOS CMOS Levels Open Drain. The corresponding ball has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
13
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Configuration for x16 components, TFBGA-84 (top view)
FIGURE 2
www..com
Notes 1. UDQS/UDQS is data strobe for DQ[15:8], LDQS/LDQS is data strobe for DQ[7:0] 2. LDM is the data mask signal for DQ[7:0], UDM is the data mask signal for DQ[15:8] 3. VDDL and VSSDL are power and ground for the DLL. VDDL is connected to VDD on the device. VDD, VDDQ, VSSDL, VSS, and VSSQ are isolated on the device.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
14
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
2.3
Addressing
This chapter describes the DDR2 addressing.
TABLE 9
256 Mb DDR2 Addressing
www..com
Configuration Bank Address Number of Banks Auto Precharge Row Address Column Address Number of Column Address Bits Number of I/Os Page Size [Bytes]
32 Mb x 81) BA[1:0] 4 A10 / AP A[12:0] A[9:0] 10 8 1024 (1 K)
16 Mb x162) BA[1:0] 4 A10 / AP A[12:0] A[8:0] 9 16 1024 (1 K)
Note
3)
4)
1) 2) 3) 4)
Referred to as 'org' Referred to as 'org' Referred to as 'colbits' PageSize = 2colbits x org/8 [Bytes]
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
15
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
3
www..com
Functional Description
Mode Register Set (MRS)
This chapter contains the functional description.
3.1
The mode register stores the data for controlling the various operating modes of DDR2 SDRAM.
TABLE 10
Mode Register Definition, BA2:0 = 000B
Field BA2 Bits 16 Type1) reg. addr. Description Bank Address 2 Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA1 BA0 A13 15 14 13 BA2 Bank Address Bank Address 1 0B BA1 Bank Address Bank Address 0 BA0 Bank Address 0B Address Bus Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B PD 12 w A13 Address bit 13 Active Power-Down Mode Select PD Fast exit 0B PD Slow exit 1B Write Recovery2) Note: All other bit combinations are illegal. 001B 010B 011B 100B 101B DLL 8 w WR 2 WR 3 WR 4 WR 5 WR 6
WR
[11:9]
w
DLL Reset 0B DLL No 1B DLL Yes
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
16
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Field TM
Bits 7
Type1) w
Description Test Mode 0B TM Normal Mode TM Vendor specific test mode 1B CAS Latency Note: All other bit combinations are illegal. 011B 100B 101B 110B 111B CL 3 CL 4 CL 5 CL 6 CL 7
CL
www..com
[6:4]
w
BT
3
w
Burst Type BT Sequential 0B BT Interleaved 1B Burst Length Note: All other bit combinations are illegal. 010B BL 4 011B BL 8
BL
[2:0]
w
1) w = write only register bits 2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer: WR [cycles] tWR (ns) / tCK (ns). The mode register must be programmed to fulfill the minimum requirement for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by tCK.MIN.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
17
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
3.2
Extended Mode Register EMR(1)
latency, OCD program, ODT, DQS and output buffers disable, RDQS and RDQS enable.
The Extended Mode Register EMR(1) stores the data for enabling or disabling the DLL, output driver strength, additive
www..com
TABLE 11
Extended Mode Register Definition, BA2:0 = 001B
Field BA2 Bits 16 Type1) reg. addr. Description Bank Address 2 Note: BA2 not available on 256 Mbit and 512 Mbit components 0B BA1 BA0 A13 15 14 13 w BA2 Bank Address Bank Address 1 BA1 Bank Address 0B Bank Address 0 1B BA0 Bank Address Address Bus Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 0B Qoff 12 w A13 Address bit 13 Output Disable 0B QOff Output buffers enabled 1B QOff Output buffers disabled Read Data Strobe Output (RDQS, RDQS) 0B RDQS Disable 1B RDQS Enable Complement Data Strobe (DQS Output) 0B DQS Enable 1B DQS Disable Off-Chip Driver Calibration Program 000B OCD OCD calibration mode exit, maintain setting 001B OCD Drive (1) 010B OCD Drive (0) 100B OCD Adjust mode 111B OCD OCD calibration default Additive Latency Note: All other bit combinations are illegal. 000B 001B 010B 011B 100B AL 0 AL 1 AL 2 AL 3 AL 4
RDQS
11
w
DQS
10
w
OCD [9:7] Program
w
AL
[5:3]
w
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
18
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Field RTT
Bits 6,2
Type1) w
Description Nominal Termination Resistance of ODT Note: See Table 21 "ODT DC Electrical Characteristics" on Page 26 00B 01B 10B 11B RTT (ODT disabled) RTT 75 Ohm RTT 150 Ohm RTT 50 Ohm
www..com
DIC
1
w
Off-chip Driver Impedance Control 0B DIC Full (Driver Size = 100%) 1B DIC Reduced DLL Enable DLL Enable 0B DLL Disable 1B
DLL
0
w
1) w = write only register bits
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
19
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
3.3
Extended Mode Register EMR(2)
The Extended Mode Registers EMR(2) and EMR(3) are reserved for future use and must be programmed when setting the mode register during initialization.
www..com
TABLE 12
EMR(2) Programming Extended Mode Register Definition, BA2:0=010B
Field BA Bits [15:14] Type1) w Description Bank Adress 00B BA MRS 01B BA EMRS(1) 10B BA EMRS(2) 11B BA EMRS(3): Reserved Address Bus Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 000000B SRF 7 w A Address bits Address Bus, High Temperature Self Refresh Rate for TCASE > 85C 0B A7 disable 1B A7 enable 2) Address Bus 000B A Address bits Address Bus, Duty Cycle Correction (DCC) 0B A3 DCC disabled 1B A3 DCC enabled Address Bus, Partial Array Self Refresh for 4 Banks2) Note: Only for 256 Mbit and 512 Mbit components 000B 001B 010B 011B 100B 101B 110B 111B PASR0 Full Array PASR1 Half Array (BA[1:0]=00, 01) PASR2 Quarter Array (BA[1:0]=00) PASR3 Not defined PASR4 3/4 array (BA[1:0]=01, 10, 11) PASR5 Half array (BA[1:0]=10, 11) PASR6 Quarter array (BA[1:0]=11) PASR7 Not defined
A
[13:8]
w
A DCC
[6:4] 3
w w
Partial Self Refresh for 4 banks PASR [2:0] w
1) w = write only 2) When DRAM is operated at 85C TCase 95C the extended self refresh rate must be enabled by setting bit A7 to 1 before the self refresh mode can be entered. 3) If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the specified location will be lost if self refresh is entered. Data integrity will be maintained if tREF conditions are met and no Self Refresh command is issued.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
20
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
3.4
Extended Mode Register EMR(3)
The Extended Mode Register EMR(3) is reserved for future use and all bits except BA0 and BA1 must be programmed to 0 when setting the mode register during initialization.
www..com
TABLE 13
EMR(3) Programming Extended Mode Register Definition, BA2:0=011B
Field BA2 Bits 16 Type1) reg.addr Description Bank Address 2 Note: BA2 is not available on 256Mbit and 512Mbit components 0B BA1 BA0 A 15 14 [13:0] w BA2 Bank Address Bank Adress 1 1B BA1 Bank Address Bank Adress 0 BA0 Bank Address 1B Address Bus 13:0 Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration 00000000000000BA[13:0] Address bits
1) w = write only
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
21
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
3.5
Burst Mode Operation
TABLE 14
Burst Length and Sequence
www..com
Burst Length 4
Starting Address (A2 A1 A0) x00 x01 x1 0 x1 1
Sequential Addressing (decimal) 0, 1, 2, 3 1, 2, 3, 0 2, 3, 0, 1 3, 0, 1, 2 0, 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 0, 5, 6, 7, 4 2, 3, 0, 1, 6, 7, 4, 5 3, 0, 1, 2, 7, 4, 5, 6 4, 5, 6, 7, 0, 1, 2, 3 5, 6, 7, 4, 1, 2, 3, 0 6, 7, 4, 5, 2, 3, 0, 1 7, 4, 5, 6, 3, 0, 1, 2
Interleave Addressing (decimal) 0, 1, 2, 3 1, 0, 3, 2 2, 3, 0, 1 3, 2, 1, 0 0, 1, 2, 3, 4, 5, 6, 7 1, 0, 3, 2, 5, 4, 7, 6 2, 3, 0, 1, 6, 7, 4, 5 3, 2, 1, 0, 7, 6, 5, 4 4, 5, 6, 7, 0, 1, 2, 3 5, 4, 7, 6, 1, 0, 3, 2 6, 7, 4, 5, 2, 3, 0, 1 7, 6, 5, 4, 3, 2, 1, 0
8
000 001 010 011 100 101 110 111
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
22
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
4
www..com
Truth Tables
TABLE 15
Command Truth Table
CKE Previous Cycle Current Cycle H H L H H H H H H H H X X L H L L L H L L L L L L L L L H H L H L L L L X H L L L H H H H H X X H X H CS RAS CAS WE BA0 A[12:11] A10 A[9:0] BA1 Note1)2)3)
This chapter describes the truth tables.
Function
(Extended) Mode Register Set H Auto-Refresh Self-Refresh Entry Self-Refresh Exit Single Bank Precharge Precharge all Banks Bank Activate Write Write with Auto-Precharge Read Read with Auto-Precharge No Operation Device Deselect Power Down Entry Power Down Exit H H L H H H H H H H H H H L
L L L X H H H H L L L L H X X H X H
L H H X H L L H L L H H H X X H X H
BA X X X BA X BA BA BA BA BA X X X X
OP Code X X X X X Column Column Column Column X X X X X X X L H L H L H X X X X X X X X X Column Column Column Column X X X X
4)5)6) 4) 4)7) 4)7)8)
4)5) 4)5) 4)5) 4)5)9) 4)5)9) 4)5)9) 4)5)9) 4) 4) 4)10)
Row Address
4)10)
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. 2) "X" means H or L (but a defined logic level)". 3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS and CKE at the rising edge of the clock. 5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode Register. 6) All banks must be in a precharged idle state, CKE must be high at least for tXP and all read/write bursts must be finished before the (Extended) Mode Register set Command is issued. 7) VREF must be maintained during Self Refresh operation. 8) Self Refresh Exit is asynchronous. 9) Burst reads or writes at BL = 4 cannot be terminated. See Chapter 3.5 for details. 10) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh requirements.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
23
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 16
Clock Enable (CKE) Truth Table for Synchronous Transitions
Current State1) CKE Previous Cycle6) Current Cycle6) (N-1) (N)
www..com
Command Action (N)2) 2)3) (N) RAS, CAS, WE, CS X DESELECT or NOP X DESELECT or NOP DESELECT or NOP DESELECT or NOP AUTOREFRESH Maintain Power-Down Power-Down Exit Maintain Self Refresh Self Refresh Exit Active Power-Down Entry Precharge Power-Down Entry Self Refresh Entry
Note4)5)
Power-Down
L L L L H H H
L H L H L L L H
7)8)11) 7)9)10)11) 8)11)12) 9)11)12)13)14) 7)9)10)11)15) 9)10)11)15)
Self Refresh Bank(s) Active All Banks Idle
7)11)14)16) 17)
Any State other than H listed above
1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)
Refer to the Command Truth Table
12) 13) 14) 15) 16) 17)
Current state is the state of the DDR2 SDRAM immediately prior to clock edge N. Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. . CKE must be maintained HIGH while the device is in OCD calibration mode. Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge. The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by the refresh requirements "X" means "don't care (including floating around VREF)" in Self Refresh and Power Down. However ODT must be driven HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to "1" in EMRS(1)). All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document. Valid commands for Power-Down Entry and Exit are NOP and DESELECT only. tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. VREF must be maintained during Self Refresh operation. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR period. Read commands may be issued only after tXSRD (200 clocks) is satisfied. Valid commands for Self Refresh Exit are NOP and DESELCT only. Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations, Precharge or Refresh operations are in progress. Self Refresh mode can only be entered from the All Banks Idle state. Must be a legal command as defined in the Command Truth Table.
TABLE 17
Data Mask (DM) Truth Table
Name (Function) Write Enable Write Inhibit
1) Used to mask write data; provided coincident with the corresponding data.
DM L H
DQs Valid X
Note
1)
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
24
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
5
www..com
Electrical Characteristics
Absolute Maximum Ratings
This chapter describes the Electrical Characteristics.
5.1
Caution is needed not to exceed absolute maximum ratings of the DRAM device listed in Table 18 at any time.
TABLE 18
Absolute Maximum Ratings
Symbol Parameter Rating Min. Max. +2.3 +2.3 +2.3 +2.3 V V V V C
1) 1)2) 1)2) 1) 1)2)
Unit
Note
Storage Temperature -55 +100 1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
2) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
VDD VDDQ VDDL VIN, VOUT TSTG
Voltage on VDD pin relative to VSS Voltage on VDDQ pin relative to VSS Voltage on VDDL pin relative to VSS Voltage on any pin relative to VSS
-1.0 -0.5 -0.5 -0.5
Attention: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 19
DRAM Component Operating Temperature Range
Symbol Parameter Rating Min. Max. +95 +85 C
1)2)3)4)
Unit
Notes
TOPER
Operating Temperature
0 -40
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM. 2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case temperature must be maintained between 0 - 95 C for HYB... products and -40 - +85 for HYI... products under all other specification parameters. 3) Above 85 C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 s 4) When operating this product in the 85 C to 95 C TCASE temperature range, the High Temperature Self Refresh has to be enabled by setting EMR(2) bit A7 to "1". When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
25
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
5.2
DC Characteristics
TABLE 20
Recommended DC Operating Conditions (SSTL_18)
www..com
Symbol
Parameter
Rating Min. Typ. 1.8 1.8 1.8 0.5 x VDDQ Max. 1.9 1.9 1.9 0.51 x VDDQ
Unit
Note
VDD VDDDL VDDQ VREF VTT
1) 2) 3) 4)
Supply Voltage Supply Voltage for DLL Supply Voltage for Output Input Reference Voltage
1.7 1.7 1.7 0.49 x VDDQ
V V V V
1) 1) 1) 2)3)
4) Termination Voltage VREF - 0.04 VREF VREF + 0.04 V VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ. Peak to peak ac noise on VREF may not exceed 2% VREF (dc) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in die dc level of VREF.
TABLE 21
ODT DC Electrical Characteristics
Parameter / Condition Termination resistor impedance value for EMRS(1)[A6,A2] = [0,1]; 75 Ohm Termination resistor impedance value for EMRS(1)[A6,A2] =[1,0]; 150 Ohm Termination resistor impedance value for EMRS(1)(A6,A2)=[1,1]; 50 Ohm Deviation of VM with respect to VDDQ / 2
1)
Symbol Min. Rtt1(eff) 60 Rtt2(eff) 120 Rtt3(eff) 40
Nom. Max. 75 150 50 90 180 60
Unit Note
1) 1) 1)2) 3)
delta VM -6.00 --
+ 6.00 %
Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac) respectively. Rtt(eff) = (VIH(ac) - VIL(ac)) /(I(VIHac) - I(VILac)). 2) Optional for DDR2-400, DDR2-533 and DDR2-667, mandatory for DDR2-800. 3) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load: delta VM = ((2 x VM / VDDQ) - 1) x 100%
TABLE 22
Input and Output Leakage Currents
Symbol Parameter / Condition Input Leakage Current; any input 0 V < VIN < VDD Output Leakage Current; 0 V < VOUT < VDDQ Min. -2 -5 Max. +2 +5 Unit A A Note
1) 2)
IIL IOL
1) All other pins not under test = 0 V 2) DQ's, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
26
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
5.3
DC & AC Characteristics
In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is verified by design and characterization but not subject to production test. In single ended mode, the DQS (and RDQS) signals are internally disabled and don't care.
DDR2 SDRAM pin timing are specified for either single ended or differential mode depending on the setting of the EMRS(1) "Enable DQS" mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timing are measured is mode dependent. In single www..com ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF.
TABLE 23
DC & AC Logic Input Levels
Symbol Parameter DDR2-667, DDR2-800 Min. Max. DDR2-533, DDR2-400 Min. Max. Units
VIH(dc) VIL(dc) VIH(ac) VIL(ac)
DC input logic HIGH DC input LOW AC input logic HIGH AC input LOW
VREF + 0.125
-0.3
VDDQ + 0.3 VREF - 0.125
--
VREF + 0.125
-0.3
VDDQ + 0.3 VREF - 0.125
--
V V V V
VREF + 0.200
--
VREF + 0.250
--
VREF - 0.200
VREF - 0.250
TABLE 24
Single-ended AC Input Test Conditions
Symbol Condition Input reference voltage Input signal maximum peak to peak swing Input signal minimum Slew Rate Value 0.5 x VDDQ 1.0 1.0 Unit V V V / ns Notes
1) 1) 2)3)
VREF VSWING.MAX
SLEW
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test. 2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the range from VREF to VIL(ac).MAX for falling edges as shown in Figure 3 3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac) on the negative transitions.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
27
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 3
Single-ended AC Input Test Conditions Diagram
www..com
TABLE 25
Differential DC and AC Input and Output Logic Levels
Symbol Parameter DC input signal voltage DC differential input voltage AC differential input voltage AC differential cross point input voltage AC differential cross point output voltage Min. -0.3 0.25 0.5 0.5 x VDDQ - 0.175 0.5 x VDDQ - 0.125 Max. Unit -- -- V V V Notes
1) 2) 3) 4) 5)
VIN(dc) VID(dc) VID(ac) VIX(ac) VOX(ac)
1) 2) 3) 4)
VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 0.5 x VDDQ + 0.175 0.5 x VDDQ + 0.125
indicates the voltage at which differential input signals must cross. 5) The value of VOX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VOX(ac) is expected to track variations in VDDQ. VOX(ac) indicates the voltage at which differential input signals must cross.
VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc. VID(dc) specifies the input differential voltage VTR- VCP required for switching. The minimum value is equal to VIH(dc) - VIL(dc). VID(ac) specifies the input differential voltage VTR - VCP required for switching. The minimum value is equal to VIH(ac) - VIL(ac). The value of VIX(ac) is expected to equal 0.5 x VDDQ of the transmitting device and VIX(ac) is expected to track variations in VDDQ. VIX(ac)
FIGURE 4
Differential DC and AC Input and Output Logic Levels Diagram
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
28
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
5.4
Output Buffer Characteristics
This chapter describes the Output Buffer Characteristics.
TABLE 26
SSTL_18 Output DC Current Drive
www..com
Symbol
Parameter Output Minimum Source DC Current
SSTL_18 -13.4
Unit mA
Notes
1)2)
2)3) Output Minimum Sink DC Current 13.4 mA 1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUT-VDDQ) / IOH must be less than 21 for values of VOUT between VDDQ and VDDQ - 280 mV. 2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by
IOH IOL
shifting the desired driver operating points along 21 Ohm load line to define a convenient current for measurement. 3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.
TABLE 27
SSTL_18 Output AC Test Conditions
Symbol Parameter Minimum Required Output Pull-up Maximum Required Output Pull-down Output Timing Measurement Reference Level SSTL_18 Unit V V V Note
1) 1)
VOH VOL VOTR
VTT + 0.603 VTT - 0.603 0.5 x VDDQ
1) SSTL_18 test load for VOH and VOL is different from the referenced load . The SSTL_18 test load has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes that 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA x 25 Ohm = 335 mV). With an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the ouput device (13.4 mA x 45 Ohm = 603 mV).
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
29
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 28
OCD Default Characteristics
Symbol -- --
www..com
Description Output Impedance Pull-up / Pull down mismatch Output Impedance step size for OCD calibration
Min. 0 0 1.5
Nominal -- -- --
Max. 4 1.5 5.0
Unit V / ns
Notes
1)2) 1)2)3) 4) 1)5)6)7)
--
Output Slew Rate 1) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V
SOUT
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV; (VOUT-VDDQ) / IOH must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ - 280 mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7 V; VOUT = -280 mV; VOUT / IOL must be less than 23.4 Ohms for values of VOUT between 0 V and 280 mV. 3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage. 4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18 0.75 Ohms under nominal conditions. 5) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured from AC to AC. This is verified by design and characterization but not subject to production test. 6) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ's is included in tDQSQ and tQHS specification. 7) DRAM output Slew Rate specification applies to 400, 533 and 667 MT/s speed bins.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
30
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
5.5
Input / Output Capacitance
This chapter contains the Input / Output Capacitance.
TABLE 29
Input / Output Capacitance
www..com
Symbol
Parameter
DDR2-800 Min. Max. 2.0 0.25 1.75 0.25 3.5 0.5
DDR2-667 Min. 1.0 -- 1.0 -- 2.5 -- Max. 2.0 0.25 2.0 0.25 3.5 0.5
DDR2-533 Min. 1.0 -- 1.0 -- 2.5 -- Max. 2.0 0.25 2.0 0.25 4.0 0.5
DDR2-400 Min. 1.0 -- 1.0 -- 2.5 -- Max. 2.0 0.25 2.0 0.25 4.0 0.5
Unit
CCK CDCK CI CDI CIO CDIO
Input capacitance, CK and CK Input capacitance delta, CK and CK Input capacitance, all other input-only pins Input capacitance delta, all other inputonly pins Input/output capacitance, DQ, DM, DQS, DQS Input/output capacitance delta, DQ, DM, DQS, DQS
1.0 -- 1.0 -- 2.5 --
pF pF pF pF pF pF
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
31
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
5.6
Overshoot and Undershoot Specification
This chapter contains Overshoot and Undershoot Specification.
TABLE 30
AC Overshoot / Undershoot Specification for Address and Control Pins
www..com
Parameter Maximum peak amplitude allowed for overshoot area Maximum peak amplitude allowed for undershoot area Maximum overshoot area above VDD Maximum undershoot area below VSS
DDR2-400 0.9 0.9 1.33 1.33
DDR2-533 0.9 0.9 1.00 1.00
DDR2-667 0.9 0.9 0.8 0.8
DDR2-800 0.9 0.9 0.66 0.66
Unit V V V-ns V-ns
FIGURE 5
AC Overshoot / Undershoot Diagram for Address and Control Pins
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
32
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 31
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins
Parameter Maximum peak amplitude allowed for overshoot area
www..com peak amplitude allowed for Maximum
DDR2-400 0.9 0.9 0.38 0.38
DDR2-533 0.9 0.9 0.28 0.28
DDR2-667 0.9 0.9 0.23 0.23
DDR2-800 0.9 0.9 0.23 0.23
Unit V V V-ns V-ns
undershoot area Maximum overshoot area above VDDQ Maximum undershoot area below VSSQ
FIGURE 6
AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
33
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
6
www..com
Currents Measurement Conditions
TABLE 32
IDD Measurement Conditions
Symbol Note
1)2)3)4)5)6)
This chapter describes the Current Measurement, Specifications and Conditions.
Parameter Operating Current - One bank Active - Precharge tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching.
IDD0
Operating Current - One bank Active - Read - Precharge IDD1 IOUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0, CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control inputs are switching; Databus inputs are switching. Precharge Power-Down Current IDD2P All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data bus inputs are floating. Precharge Standby Current IDD2N All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are switching, Data bus inputs are switching. Precharge Quiet Standby Current All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are stable, Data bus inputs are floating.
1)2)3)4)5)6)
1)2)3)4)5)6)
1)2)3)4)5)6)
IDD2Q
1)2)3)4)5)6)
Active Power-Down Current IDD3P(0) All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data bus inputs are floating. MRS A12 bit is set to 0 (Fast Power-down Exit). Active Power-Down Current IDD3P(1) All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit); Active Standby Current IDD3N All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; Operating Current IDD4R Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA. Operating Current IDD4W Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD); tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands. Address inputs are switching; Data Bus inputs are switching; Burst Refresh Current IDD5B tCK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching. Distributed Refresh Current tCK = tCK(IDD), Refresh command every tREFI = 7.8 s interval, CKE is LOW and CS is HIGH between valid commands, Other control and address inputs are switching, Data bus inputs are switching.
1)2)3)4)5)6)
1)2)3)4)5)6)
1)2)3)4)5)6)
1)2)3)4)5)6)
1)2)3)4)5)6)
1)2)3)4)5)6)
IDD5D
1)2)3)4)5)6)
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
34
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
Note
1)2)3)4)5)6)
Self-Refresh Current IDD6 CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are floating, Data bus inputs are floating. Operating Bank Interleave Read Current IDD7 1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 x tCK(IDD); tCK = tCK(IDD) www..com , tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid commands. Address bus inputs are stable during deselects; Data bus is switching. 2. Timing pattern: see Detailed IDD7 timings shown below. 1) VDDQ = 1.8 V 0.1 V; VDD = 1.8 V 0.1 V. 2) IDD specifications are tested after the device is properly initialized. 3) IDD parameter are specified with ODT disabled.
4) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS. 5) Definitions for IDD , see Table 33. 6) Timing parameter minimum and maximum values for IDD current measurements are defined in Chapter 7.
1)2)3)4)5)6)
Detailed IDD7 The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the specification. Legend: A = Active; RA = Read with Autoprecharge; D = Deselect. IDD7 : Operating Current: All Bank Interleave Read operation All banks are being interleaved at minimum tRC.IDD without violating tRRD.IDD using a burst length of 4. Control and address bus inputs are STABLE during DESELECTs. IOUT = 0 mA. DDR2-400 3-3-3: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D DDR2-533 4-4-4: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D DDR2-667 5-5-5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D DDR2-667 4-4-4: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D DDR2-800 6-6-6: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D DDR2-800 5-5-5: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D
TABLE 33
Definition for IDD
Parameter LOW HIGH STABLE FLOATING SWITCHING Description Defined as VIN VIL.AC.MAX Defined as VIN VIH.AC.MIN Defined as inputs are stable at a HIGH or LOW level Defined as inputs are VREF = VDDQ / 2 Defined as: Inputs are changing between high and low every other clock (once per two clocks) for address and control signals, and inputs changing between high and low every other clock (once per clock) for DQ signals not including mask or strobes
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
35
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 34
IDD Specification
Symbol -25F DDR2-800D -2.5 DDR2-800E 75 85 5.0 50 35 22 5.0 50 125 175 135 190 95 6 4.5 155 170 -3S DDR2-667D 62 71 5.0 45 30 19 5.0 45 110 145 115 160 95 6 4.5 138 157 -3.7 DDR2-533C 55 60 4.5 35 25 16 4.5 35 90 115 95 130 90 6 4.5 135 150 -5 DDR2-400B 50 55 4.5 28 20 13 4.5 30 70 90 75 105 85 6 4.5 125 140 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA
3) 3) 1) 2)
Unit
Note
IDD0 www..com IDD1 IDD2P IDD2N IDD2Q IDD3P_0 (fast) IDD3P_1 (slow) IDD3N IDD4R IDD4R IDD4W IDD4W IDD5B IDD5D IDD6 IDD7 IDD7
80 90 5.0 50 35 22 5.0 50 125 175 135 190 95 6 4.5 165 180
x8/x16 x8/x16
x8 x16 x8 x16
x8 x16
1) MRS(12)=0 2) MRS(12)=1 3) 0 TCASE 85C.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
36
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
7
www..com
Timing Characteristics
Speed Grade Definitions
This chapter contains speed grade definition, AC timing parameter and ODT tables.
7.1
TABLE 35
Speed Grade Definition
Speed Grade QAG Sort Name CAS-RCD-RP latencies Parameter Clock Period @ CL = 3 @ CL = 4 @ CL = 5 @ CL = 6 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol DDR2-800D -25F 5-5-5 Min. 5 3.75 2.5 2.5 45 57.5 12.5 12.5 Max. 8 8 8 8 70k -- -- -- DDR2-800E -2.5 6-6-6 Min. 5 3.75 3 2.5 45 60 15 15 Max. 8 8 8 8 70k -- -- -- Unit Note
tCK
-- ns ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK tCK tRAS tRC tRCD tRP
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
37
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 36
Speed Grade Definition
Speed Grade QAG Sort Name CAS-RCD-RP latencies www..com Parameter Clock Period @ CL = 3 @ CL = 4 @ CL = 5 Row Active Time Row Cycle Time RAS-CAS-Delay Row Precharge Time Symbol DDR2-667D -3S 5-5-5 Min. 5 3.75 3 45 60 15 15 Max. 8 8 8 70k -- -- -- DDR2-533C -3.7 4-4-4 Min. 5 3.75 3.75 45 60 15 15 Max. 8 8 8 70k -- -- -- DDR2-400B -5 3-3-3 Min. 5 5 5 40 55 15 15 Max. 8 8 8 70k -- -- -- Unit Note
tCK
-- ns ns ns ns ns ns ns
1)2)3)4) 1)2)3)4) 1)2)3)4) 1)2)3)4)5) 1)2)3)4) 1)2)3)4) 1)2)3)4)
tCK tCK tCK tRAS tRC tRCD tRP
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. . 2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. CKDQS RDQS 3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ 4) The output timing reference voltage level is VTT. 5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
38
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
7.2
Component AC Timing Parameters
TABLE 37
DRAM Component Timing Parameter by Speed Grade - DDR2-800 and DDR2-667
www..com
Parameter
Symbol
DDR2-800 Min. Max. +400 -- 0.52 8000 -- 0.52 --
DDR2-667 Min. -450 2 0.48 3000 3 0.48 WR + tnRP Max. +450 -- 0.52 8000 -- 0.52 --
Unit
Note1)2)3
)4)5)6)7)
DQ output access time from CK / CK tAC
-400 2 0.48 2500 3 0.48 WR + tnRP
ps nCK
8)
tCCD Average clock high pulse width tCH.AVG Average clock period tCK.AVG CKE minimum pulse width ( high and tCKE
CAS to CAS command delay low pulse width) Average clock low pulse width Auto-Precharge write recovery + precharge time
tCK.AVG
ps nCK
9)10)
11)
tCL.AVG tDAL
tCK.AVG
nCK ns ps
9)10) 12)13)
Minimum time clocks remain ON after tDELAY CKE asynchronously drops LOW
tIS + tCK .AVG -- + tIH
125 0.35 -350 0.35 0.35 -- - 0.25 50 0.2 0.2 Min(tCH.ABS, tCL.ABS) -- 250 0.6 175 2 x tAC.MIN -- -- +350 -- -- 200 + 0.25 -- -- -- __
tIS + -- tCK .AVG + tIH
175 0.35 -400 0.35 0.35 -- - 0.25 100 0.2 0.2 Min(tCH.ABS, tCL.ABS) -- 275 0.6 200 2 x tAC.MIN -- -- +400 -- -- 240 + 0.25 -- -- -- __
tDH.BASE DQ and DM input pulse width for each tDIPW
DQ and DM input hold time input DQS output access time from CK / CK tDQSCK
14)18)19)
tCK.AVG
ps
8)
tDQSH tDQSL DQS-DQ skew for DQS & associated tDQSQ
DQS input high pulse width DQS input low pulse width DQ signals DQS latching rising transition to associated clock edges DQ and DM input setup time DQS falling edge hold time from CK DQS falling edge to CK setup time CK half pulse width Data-out high-impedance time from CK / CK Address and control input hold time Control & address input pulse width for each input
tCK.AVG tCK.AVG
ps
15)
tDQSS tDS.BASE tDSH tDSS tHP tHZ tIH.BASE tIPW
tCK.AVG
ps
16)
17)18)19) 16) 16) 20)
tCK.AVG tCK.AVG
ps ps ps
tAC.MAX
-- -- -- tAC.MAX
tAC.MAX
-- -- --
8)21)
22)24)
tCK.AVG
ps ps ps ns
23)24) 8)21) 8)21)
Address and control input setup time tIS.BASE DQ low impedance time from CK/CK tLZ.DQ DQS/DQS low-impedance time from CK / CK
tLZ.DQS
tAC.MIN
0
tAC.MAX
12
tAC.MIN
0
tAC.MAX tAC.MAX
12
MRS command to ODT update delay tMOD
34)
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
39
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-800 Min. Max. -- 12 -- 300 7.8 3.9 -- -- 1.1 0.6 -- -- -- -- 0.6 -- -- -- -- --
DDR2-667 Min. 2 0 Max. -- 12 -- 340 7.8 3.9 -- -- 1.1 0.6 -- -- -- -- 0.6 -- -- -- -- --
Unit
Note1)2)3
)4)5)6)7)
Mode register set command cycle time OCD drive mode output delay DQ/DQS www..com output hold time from DQS DQ hold skew factor Average periodic refresh Interval Auto-Refresh to Active/Auto-Refresh command period Precharge-All (4 banks) command period Read preamble Read postamble Active to active command period for 1KB page size products Active to active command period for 2KB page size products
tMRD tOIT tQH tQHS tREFI tRFC tRP tRPRE tRPST tRRD tRRD
2 0
nCK ns ps ps s s ns ns
34) 25) 26) 27)28) 27)29) 30)
tHP - tQHS
-- -- -- 75
tHP - tQHS
-- -- -- 75
tRP
0.9 0.4 7.5 10 7.5 0.35 0.4 15 7.5 2 8 - AL 2
tRP
0.9 0.4 7.5 10 7.5 0.35 0.4 15 7.5 2 7 - AL 2
tCK.AVG tCK.AVG
ns ns ns
31)32) 31)33) 34)
34)
Internal Read to Precharge command tRTP delay
34)
tWPRE Write postamble tWPST Write recovery time tWR Internal write to read command delay tWTR Exit power down to read command tXARD Exit active power-down mode to read tXARDS
Write preamble command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect) Exit self-refresh to a non-read command Exit self-refresh to read command Write command to DQS associated clock edges
tCK.AVG tCK.AVG
ns ns nCK nCK nCK
34) 34)35)
tXP
tXSNR tXSRD
WL
tRFC +10
200 RL - 1
-- --
tRFC +10
200 RL-1
-- --
ns nCK nCK
34)
1) VDDQ = 1.8 V 0.1V; VDD = 1.8 V 0.1 V. 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. DQS RDQS 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
40
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
7) New units, `tCK.AVG` and `nCK`, are introduced in DDR2-667 and DDR2-800. Unit `tCK.AVG` represents the actual tCK.AVG of the input clock under operation. Unit `nCK` represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, `tCK` is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 8) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10PER).MIN = - 272 ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN - tERR(6-10PER).MAX = - 400 ps - 293 ps = - 693 ps and tDQSCK.MAX(DERATED) = tDQSCK.MAX - tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2-667 derates to tLZ.DQ.MIN(DERATED) = - 900 ps - 293 ps = - 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!) www..com 9) Input clock jitter spec parameter. These parameters and the ones in Chapter 7.3 are referred to as 'input clock jitter spec parameters' and these parameters apply to DDR2-667 and DDR2-800 only. The jitter specified is a random jitter meeting a Gaussian distribution. 10) These parameters are specified per their average values, however it is understood that the relationship as defined in Chapter 7.3 between the average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations of Chapter 7.3). 11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of tIS + 2 x tCK + tIH. 12) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For DDR2-533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks. 13) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR. 14) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and VIH.DC.MIN. See Figure 8. 15) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate mismatch between DQS / DQS and associated DQ in any given cycle. 16) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. 17) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See Figure 8. 18) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed. 19) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/R)DQS / DQS) crossing. 20) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the minimum of the actual instantaneous clock low time. 21) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . 22) input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied to the device under test. See Figure 9. 23) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied to the device under test. See Figure 9. 24) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. 25) tQH = tHP - tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.} Examples: 1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps minimum. 26) tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation of the output drivers.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
41
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
27) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 28) 0 C TCASE 85 C. 29) 85 C < TCASE 95 C. 30) A maximum of eight Refresh commands can be posted to any given DDR2 SDRAM, meaning that the maximum absolute interval between any Refresh command and the next Refresh command is 9 x tREFI. 31) tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST), or begins driving (tRPRE). Figure 7 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving www..com (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. 32) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.PER.MIN = - 72 ps and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG - 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX + tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!). 33) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2-667 SDRAM has tJIT.DUTY.MIN = - 72 ps and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG - 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX + tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!). 34) For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR2-667 5-5-5, of which tRP = 15 ns, the device will support tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter. 35) tWTR is at lease two clocks (2 x tCK) independent of operation frequency. 36) This timing parameter is relaxed than Industry Standard
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
42
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 38
DRAM Component Timing Parameter by Speed Grade - DDR2-533 and DDR2-400
Parameter Symbol DDR2-533 Min. DQ output www..com access time from CK / CK CAS A to CAS B command period CK, CK high-level width CKE minimum high and low pulse width CK, CK low-level width Auto-Precharge write recovery + precharge time Minimum time clocks remain ON after CKE asynchronously drops LOW DQ and DM input hold time (differential data strobe) DQ and DM input hold time (single ended data strobe) Max. +500 -- 0.55 -- 0.55 -- DDR2-400 Min. -600 2 0.45 3 0.45 WR + tRP Max. +600 -- 0.55 -- 0.55 -- ps Unit Notes1)2)
3)4)5)6)
tAC tCCD tCH tCKE tCL tDAL tDELAY
-500 2 0.45 3 0.45 WR + tRP
tCK tCK tCK tCK tCK
ns
7)
tIS + tCK + tIH --
tIS + tCK + tIH --
8)
tDH.BASE tDH1.BASE
225 -25 0.35 -450 0.35 0.35 -- - 0.25 100 -25 0.2 0.2 MIN. (tCL, tCH) -- 375
-- -- -- +450 -- -- 300 + 0.25 -- -- -- --
275 25 0.35 -500 0.35 0.35 -- - 0.25 150 25 0.2 0.2 MIN. (tCL, tCH)
-- -- -- +500 -- -- 350 + 0.25 -- -- -- --
ps ps
9)
10)
DQ and DM input pulse width (each tDIPW input) DQS output access time from CK / CK DQS input HIGH pulse width (write cycle) DQS input LOW pulse width (write cycle) DQS-DQ skew (for DQS & associated DQ signals)
tCK
ps
tDQSCK tDQSH tDQSL tDQSQ
tCK tCK
ps
10)
Write command to 1st DQS latching tDQSS transition DQ and DM input setup time (differential data strobe)
tCK
ps ps
10)
tDS.BASE
DQ and DM input setup time (single tDS1.BASE ended data strobe) DQS falling edge hold time from CK tDSH (write cycle) DQS falling edge to CK setup time (write cycle) Clock half period CK / CK
10)
tCK tCK
11)
tDSS
tHP Data-out high-impedance time from tHZ
Address and control input hold time tIH.BASE
tAC.MAX
--
-- 475
tAC.MAX
--
ps ps
12)
10)
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
43
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-533 Min. Max. --
DDR2-400 Min. 0.6 Max. --
Unit
Notes1)2)
3)4)5)6)
Address and control input pulse width (each input)
www..com
tIPW
0.6
tCK
10) 13)
Address and control input setup time tIS.BASE DQ low-impedance time from CK / CK DQS low-impedance from CK / CK MRS command to ODT update delay Mode register set command cycle time OCD drive mode output delay Data output hold time from DQS Data hold skew factor Average periodic refresh Interval Average periodic refresh Interval Auto-Refresh to Active/AutoRefresh command period Precharge-All (4 banks) command period Read preamble Read postamble Active bank A to Active bank B command period Active bank A to Active bank B command period Internal Read to Precharge command delay Write preamble Write postamble Auto-Precharge
250 2 x tAC.MIN
--
350 2 x tAC.MIN
--
ps ps ps ns
tLZ(DQ) tLZ(DQS) tMOD tMRD tOIT tQH tQHS tREFI tREFI tRFC tRP tRPRE tRPST tRRD tRRD tRTP
tAC.MAX tAC.MAX
12 -- 12 -- 400 7.8 3.9 -- -- 1.1 0.60 -- -- -- -- 0.60 -- -- --
tAC.MAX tAC.MAX
12 -- 12 -- 450 7.8 3.9 -- -- 1.1 0.60 -- -- -- -- 0.60 -- -- --
tAC.MIN
0 2 0
tAC.MIN
0 2 0
13)
tCK
ns ps s s ns ns
13)14) 15)17) 16)
tHP -tQHS
-- -- -- 75
tHP -tQHS
-- -- -- 75
tRP
0.9 0.40 7.5 10 7.5 0.25 0.40 15 7.5 2
tRP
0.9 0.40 7.5 10 7.5 0.25 0.40 15 10 2
tCK tCK
ns ns ns
13) 13) 13)17)
15)21)
tWPRE tWPST Write recovery time for write without tWR
Internal Write to Read command delay Exit power down to any valid command (other than NOP or Deselect) Exit active power-down mode to Read command (slow exit, lower power) Exit precharge power-down to any valid command (other than NOP or Deselect)
tCK tCK
ns ns
18)
tWTR tXARD
19)
tCK
20)
tXARDS
6 - AL
--
6 - AL
--
tCK
20)
tXP
2
--
2
--
tCK
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
44
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Parameter
Symbol
DDR2-533 Min. Max. -- --
DDR2-400 Min. Max. -- --
Unit
Notes1)2)
3)4)5)6)
Exit Self-Refresh to non-Read command Write recovery time for write with www..com Auto-Precharge
tXSNR
tRFC +10
200
tRFC +10
200
ns
Exit Self-Refresh to Read command tXSRD WR
tWR/tCK
tWR/tCK
tCK tCK
21)
1) VDDQ = 1.8 V 0.1V; VDD = 1.8 V 0.1 V. 2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down and then restarted through the specified initialization sequence before normal operation can continue. 3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. 4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode. DQS RDQS 5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low. 6) The output timing reference voltage level is VTT. 7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MR. 8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. 9) For timing definition, refer to the Component data sheet. 10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle. 11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for tCL and tCH). 12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These parameters are verified by design and characterization, but not subject to production test. 13) The Auto-Refresh command interval has be reduced to 3.9 s when operating the DDR2 DRAM in a temperature range between 85 C and 95 C. 14) 0 C TCASE 85 C. 15) 85 C < TCASE 95 C. 16) A maximum of eight Refresh commands can be posted to any given DDR2 SDRAM, meaning that the maximum absolute interval between any Refresh command and the next Refresh command is 9 x tREFI. 17) The tRRD timing parameter depends on the page size of the DRAM organization. 18) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. 19) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 z. 20) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In "standard active powerdown mode" (MR, A12 = "0") a fast power-down exit timing tXARD can be used. In "low active power-down mode" (MR, A12 ="1") a slow power-down exit timing tXARDS has to be satisfied. 21) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to the WR parameter stored in the MRS.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
45
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 7
Method for Calculating Transitions and Endpoint
www..com
FIGURE 8
Differential Input Waveform Timing - tDS and tDH
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
46
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 9
Differential Input Waveform Timing - tlS and tlH
www..com
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
47
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
7.3
Jitter Definition and Clock Jitter Specification
Generally, jitter is defined as "the short-term variation of a signal with respect to its ideal position in time". The following table provides an overview of the terminology.
TABLE 39
www..com
Average Clock and Jitter Symbols and Definition
Parameter Description Units ps Average clock period tCK.AVG is calculated as the average clock period within any consecutive 200-cycle window:
Symbol
tCK.AVG
N = 200
tJIT.PER
Clock-period jitter
tJIT.PER is defined as the largest deviation of any single tCK from tCK.AVG: tJIT.PER = Min/Max of {tCKi - tCK.AVG} where i = 1 to 200
ps
tJIT(PER, LCK)
Clock-period jitter during DLL-locking period Cycle-to-cycle clock period jitter
tJIT.PER defines the single-period jitter when the DLL is already locked. tJIT.PER is not guaranteed through final production testing. tJIT(PER,LCK) uses the same definition as tJIT.PER, during the DLL-locking ps
period only. tJIT(PER,LCK) is not guaranteed through final production testing. consecutive clock cycles: tJIT.CC = Max of ABS{tCKi+1 - tCKi}
tJIT.CC
tJIT.CC is defined as the absolute difference in clock period between two
ps
tJIT(CC, LCK)
Cycle-to-cycle clock period jitter during DLL-locking period Cumulative error across 2 cycles
tJIT.CC defines the cycle - to - cycle jitter when the DLL is already locked. tJIT.CC is not guaranteed through final production testing. tJIT(CC,LCK) uses the same definition as tJIT.CC during the DLL-locking
period only. tJIT(CC,LCK) is not guaranteed through final production testing.
ps
tERR.2PER
tERR.2PER is defined as the cumulative error across 2 consecutive cycles from tCK.AVG:
ps
n = 2 for tERR(2per) where i = 1 to 200
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
48
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Symbol
Parameter Cumulative error across n cycles
Description
Units ps
tERR.nPER
tERR.2PER is defined as the cumulative error across n consecutive cycles from tCK.AVG:
www..com
where, i = 1 to 200 and n = 3 for tERR.3PER n = 4 for tERR.4PER n = 5 for tERR.5PER 6 n 10 for tERR.6-10PER 11 n 50 for tERR.11-50PER
tCH.AVG
Average high-pulse width
tCH.AVG is defined as the average high-pulse width, as calculated across
any consecutive 200 high pulses:
tCK.AVG
N = 200
tCL.AVG
Average low-pulse width
tCL.AVG is defined as the average low-pulse width, as calculated across any tCK.AVG
consecutive 200 low pulses:
N = 200
tJIT.DUTY
Duty-cycle jitter
tJIT.DUTY = Min/Max of {tJIT.CH , tJIT.CL}, where: tJIT.CH is the largest deviation of any single tCH from tCH.AVG tJIT.CL is the largest deviation of any single tCL from tCL.AVG tJIT.CH = {tCHi - tCH.AVG x tCK.AVG} where i=1 to 200 tJIT.CL = {tCLi - tCL.AVG x tCK.AVG} where i=1 to 200
ps
The following parameters are specified per their average values however, it is understood that the following relationship between the average timing and the absolute instantaneous timing holds all the time.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
49
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 40
Absolute Jitter Value Definitions
Symbol Parameter Clock period Clock high-pulse width Clock low-pulse width Min. Max. Unit ps ps ps
tCK.ABS
www..com t
CH.ABS
tCL.ABS
tCK.AVG(Min) + tJIT.PER(Min) tCK.AVG(Max) + tJIT.PER(Max) tCH.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCH.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max) tCL.AVG(Min) x tCK.AVG(Min) + tJIT.DUTY(Min) tCL.AVG(Max) x tCK.AVG(Max) + tJIT.DUTY(Max)
Example: for DDR2-667, tCH.ABS.MIN = (0.48 x 3000ps) - 125 ps = 1315 ps = 0.438 x 3000 ps. Table 41 shows clock-jitter specifications.
TABLE 41
Clock-Jitter Specifications for -667, -800
Symbol Parameter DDR2 -667 Min. Max. 8000 +125 +100 +250 +200 +175 +225 +250 +250 +350 +450 0.52 0.52 +125 DDR2 -800 Min. 2500 -100 -80 -200 -160 -150 -175 -200 -200 -300 -450 0.48 0.48 -100 Max. 8000 +100 +80 +200 +160 +150 +175 +200 +200 +300 +450 0.52 0.52 +100 ps ps ps ps ps ps ps ps ps ps ps Unit
tCK.AVG tJIT.PER tJIT(PER,LCK) tJIT.CC tJIT(CC,LCK) tERR.2PER tERR.3PER tERR.4PER tERR.5PER tERR(6-10PER) tERR(11-50PER) tCH.AVG tCL.AVG tJIT.DUTY
Average clock period nominal w/o jitter Clock-period jitter Clock-period jitter during DLL locking period Cycle-to-cycle clock-period jitter Cycle-to-cycle clock-period jitter during DLL-locking period Cumulative error across 2 cycles Cumulative error across 3 cycles Cumulative error across 4 cycles Cumulative error across 5 cycles
3000 -125 -100 -250 -200 -175 -225 -250 -250
Cumulative error across n cycles with n = 6 -350 .. 10, inclusive Cumulative error across n cycles with n = 11 .. 50, inclusive Average high-pulse width Average low-pulse width Duty-cycle jitter -450 0.48 0.48 -125
tCK.AVG tCK.AVG
ps
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
50
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
7.4
ODT AC Electrical Characteristics
This chapter describes the ODT AC electrical characteristics.
TABLE 42
ODT AC Characteristics and Operating Conditions for DDR2-667 , DDR2-800
www..com
Symbol
Parameter / Condition
Values Min. Max. 2
Unit
Note
tAOND tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD
ODT turn-on delay ODT turn-on ODT turn-on (Power-Down Modes) ODT turn-off delay ODT turn-off ODT turn-off (Power-Down Modes) ODT to Power Down Mode Entry Latency ODT Power Down Exit Latency
2
nCK
ns ns
1) 1)2) 1) 1) 1)3) 1) 1) 1)
tAC.MIN tAC.MIN + 2 ns
2.5
tAC.MAX + 0.7 ns 2 tCK + tAC.MAX + 1 ns
2.5
nCK
tAC.MIN tAC.MIN + 2 ns
3 8
tAC.MAX + 0.6 ns ns 2.5 tCK + tAC.MAX + 1 ns ns -- nCK -- nCK
1) New units, "tCK.AVG" and "nCK", are introduced in DDR2-667 and DDR2-800 Unit "tCK.AVG" represents the actual tCK.AVG of the input clock under operation. Unit "nCK" represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and DDR2-533, "tCK" is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min). 2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800 tAOND is 2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges. 3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
51
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
TABLE 43
ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400
Symbol Parameter / Condition Values Min. Max. 2 Unit Note
tAOND www..com tAON tAONPD tAOFD tAOF tAOFPD tANPD tAXPD
ODT turn-on delay ODT turn-on ODT turn-on (Power-Down Modes) ODT turn-off delay ODT turn-off ODT turn-off (Power-Down Modes) ODT to Power Down Mode Entry Latency ODT Power Down Exit Latency
2
tCK
ns ns
1)
tAC.MIN tAC.MIN + 2 ns
2.5
tAC.MAX + 1 ns 2 tCK + tAC.MAX + 1 ns
2.5
tCK
ns ns
2)
tAC.MIN tAC.MIN + 2 ns
3 8
tAC.MAX + 0.6 ns 2.5 tCK + tAC.MAX + 1 ns
-- --
tCK tCK
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns. 2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
52
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
8
www..com
Package Outline
This chapter contains the package dimension figures. Notes
1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15
FIGURE 10
Package Outline P-TFBGA-60
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
53
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
FIGURE 11
Package Outline PG-TFBGA-84
www..com
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
54
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
9
www..com
Product Nomenclature
TABLE 44
Examples for Nomenclature Fields
Field Number 1 2 18 3 TC 4 256 5 16 6 0 7 A 8 F 9 10 -3.7
For reference the Qimonda SDRAM component nomenclature is enclosed in this chapter.
Example for
DDR2 DRAM
HYB
TABLE 45
DDR2 Memory Components
Field Description 1 2 3 4 Qimonda Component Prefix Interface Voltage [V] DRAM Technology, consumer variant Component Density [Mbit] Values HYB HYI 18 15 TC 32 64 128 256 512 1G 2G 4G 5 Number of I/Os 40 80 16 32 6 7 Product Variations Die Revision 0 .. 9 Coding Memory components Memory components, industrial temperature range (-40C - +85 C) SSTL_18, + 1.8 V ( 0.1 V) SSTL_15, + 1.5 V ( 0.1 V) DDR2 32 Mbit 64 Mbit 128 Mbit 256 Mbit 512 Mbit 1 Gbit 2 Gbit 4 Gbit x4 x8 x 16 x 32 look up table
A ( 0...9 ) First B ( 0...9 ) Second C ( 0...9 ) Third
8 9
Package, Lead-Free Status Power
C F - L
FBGA, lead-containing FBGA, lead-free Standard power product Low power product
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
55
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Field Description 10 Speed Grade
Values -19F -1.9 -25F -2.5 -3 -3S -3.7 -5
Coding DDR2-1066 6-6-6 DDR2-1066 7-7-7 DDR2-800 5-5-5 DDR2-800 6-6-6 DDR2-667 4-4-4 DDR2-667 5-5-5 DDR2-533 4-4-4 DDR2-400 3-3-3
www..com
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
56
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
List of Illustrations
Figure 1 Figure 2 Figure 3 www..com Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Chip Configuration for x8 components, TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration for x16 components, TFBGA-84 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-ended AC Input Test Conditions Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . Method for Calculating Transitions and Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Input Waveform Timing - tDS and tDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential Input Waveform Timing - tlS and tlH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline P-TFBGA-60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline PG-TFBGA-84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 14 28 28 32 33 46 46 47 53 54
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
57
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
List of Tables
Table 1 Table 2 Table 3 www..com Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Performance Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information for RoHS Compliant Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Abbreviations for Ball Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 256 Mb DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Mode Register Definition, BA2:0 = 000B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Extended Mode Register Definition, BA2:0 = 001B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 EMR(2) Programming Extended Mode Register Definition, BA2:0=010B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 EMR(3) Programming Extended Mode Register Definition, BA2:0=011B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Clock Enable (CKE) Truth Table for Synchronous Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Differential DC and AC Input and Output Logic Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SSTL_18 Output DC Current Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 OCD Default Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . . . . . . . . . . 33 IDD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Speed Grade Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Speed Grade Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DRAM Component Timing Parameter by Speed Grade - DDR2-800 and DDR2-667 . . . . . . . . . . . . . . . . . . 39 DRAM Component Timing Parameter by Speed Grade - DDR2-533 and DDR2-400 . . . . . . . . . . . . . . . . . . 43 Average Clock and Jitter Symbols and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Absolute Jitter Value Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Clock-Jitter Specifications for -667, -800. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ODT AC Characteristics and Operating Conditions for DDR2-667 , DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . 51 ODT AC Characteristics and Operating Conditions for DDR2-533 & DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . 52 Examples for Nomenclature Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 DDR2 Memory Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
58
Date: 2007-11-23
Internet Data Sheet
HY[B/I]18TC256[80/16]0AF 256-Mbit Double-Data-Rate-Two SDRAM
Contents
www..com
1 1.1 1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Configuration for TFBGA-60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Configuration for TFBGA-84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register EMR(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register EMR(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Mode Register EMR(3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input / Output Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Jitter Definition and Clock Jitter Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 18 20 21 22 25 25 26 27 29 31 32 37 37 39 48 51
2 2.1 2.2 2.3 3 3.1 3.2 3.3 3.4 3.5 4 5 5.1 5.2 5.3 5.4 5.5 5.6 6 7 7.1 7.2 7.3 7.4 8 9
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Currents Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Product Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Rev. 1.3, 2007-11 03062006-H3V1-XJT4
59
Date: 2007-11-23
Internet Data Sheet
www..com
Edition 2007-11 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 Munchen, Germany (c) Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. www.qimonda.com
Date: 2007-11-23


▲Up To Search▲   

 
Price & Availability of HYI18TC256160AF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X